

Numeracy Handbook Llawlyfr Rhifedd

At St Julian's School we believe that all of our students should have the opportunity to **improve and apply** their literacy, numeracy and digital competency skills to **deepen their subject knowledge** and **develop skills for life** across all areas of the curriculum. This Numeracy Handbook has been designed to give guidance and help staff, students and parents/carers. It includes the numerical methods used by the Maths Department and throughout St. Julian's. It is believed that by having consistent approaches to our numeracy skills it will be easier for our students to apply these skills across the curriculum and in turn make greater progress.

Whenever possible mental methods should be encouraged and the ability to use written methods checked. Students should ensure they always have their calculators with them to develop their confidence in using their calculator as well and using the correct calculator methods. Students should be encouraged to estimate their answers prior to completing their calculations reinforcing place value expectations and understanding.

The main strands of numeracy have been covered in this handbook which will support every St. Julian's' student in becoming numerate and confident with applying their skills in context. If you have any questions or would like further clarification, please contact the Maths Department directly.

A numerate Student is able to:

- have a sense of the size of a number and where it fits into the number size;
- recall mathematical facts confidently;
- calculate accurately and efficiently, both mentally and with pencil and paper, drawing on a range of calculator strategies;
- use proportional reasoning to simplify and solve problems;
- use calculators and other ICT resources appropriately and effectively to solve mathematical problems, and select from the display the number of figures appropriate to the context of a calculation;
- use simple formulae and substitute numbers in them;
- measure and estimate measurements, choosing suitable units, and reading numbers correctly from a range of meters, dials and scales;
- calculate simple perimeters, areas and volumes, recognising the degree of accuracy that can be achieved;
- understand and use measures of time and speed, and rates such as £ per hour or miles per litre;
- draw plane figures to given specifications and appreciate the concept of scale in geometrical drawings and maths;
- understand the difference between the mean, median and mode and the purpose for which each is used;
- collect data, discrete and continuous, and draw, interpret and predict form graphs, diagrams, charts and tables;
- have some understanding of the measurement of probability and risk;
- explain methods and justify reasoning and conclusions, using correct mathematical terms;
- judge the reasonableness of solutions and check them when necessary;
- give results to a degree of accuracy to the context.

Торіс	Content	Page
Number	Place value	4
	Number Facts	4
	Four rules of number including mental and written methods	6
	Inverse operations	9
	Directed Numbers	9
	Inequalities	10
	Fractions	11
	Percentages	14
	Decimals	16
	Rounding	18
	Ratio	19
Geometry	Coordinates	20
	2D Shapes	21
	3D Shapes	22
	The Circle	23
	Perimeter	23
	Area	24
	Volume	25
	Units of Measurement	26
	Time	27
	Bearings	29
Data	Types of Data	30
	Graphs and Charts	30
	Averages and Range	38

Place Value

Thousands (1000)	Hundreds (100)	Tens (10)	Units (1)	•	Tenths <u>1</u>	Hundredths <u>1</u>	Thousand ths <u>1</u>
					10	100	1000

The placement of the digits within the number gives us the value of that digit.

Within the number: 284.567

The digit 8 has the value of 8 tens and the digit 5 has the value of 5 tenths (5/10)

Number Facts

Even Numbers:	2 , 4, 6, 8, 10 ,12	(all even numbers can be divided by 2)

Odd Numbers: 1, 3, 5, 7, 9, 11

Square Numbers are numbers multiplied by themselves:

↓ ●			
1 x 1	2 x 2	3 x 3	4 x 4
= 1	= 4	= 9	= 16

Cube Numbers are numbers multiplied by themselves and then multiplied again:

Multiples of a number are found by multiplying that number by another whole number:

4	×	1	=	4
4	×	2	=	8
4	×	3	=	12
4	×	4	=	16
4	×	5	=	20
4	×	6	=	24
4, 8, 12, 16, 20 a	ind	12	4 a	are multiples of 4.

Factors are numbers that divide exactly into another number. The factors of 12 are 1, 2, 3, 4, 6, 12.

Prime Numbers have exactly two factors; 1 and itself. Remember 1 is NOT a prime number.

Pri	me n	umb	ers t	o 10
2	3	5	7	11
13	17	19	23	29
31	37	41	43	47
53	59	61	67	71
73	79	83	89	97

Four Rules of Number

Mental Methods Addition MI Addition

54 + 27

Method 1	Method 2	Method 3
	•	Round up to the next 10, then subtract.
50 + 20 = 70	54 + 20 = 74	54 + 30 = 84
4 + 7 = 11	74 + 7 = 81	30 is 3 too many
70 + 11 = 81		84 – 3 = 81

Subtraction MISubtraction

93 - 56

Method 1	Method 2
Count on	Break up the number being subtracted
Count on from 56 until you reach 93 4 + 30 + 3 = 37	e.g. subtract 50 then subtract 6 93 – 50 = 43 43 – 6 = 37
Addition	Subtraction
+ 2678 Line up the digits in the correct "place value." Begin by adding the units. Show working out. With addition the larger number does not NEED to go on the top.	 749 Line up the digits in the correct place value. Begin by subtracting the units. is smaller than 9, so take one "ten" from the eight "tens" to make the 6 units 16 units. Now continue subtracting. You will have to take 1 "thousand" from the "thousands" column when you subtract the "hundreds."

Written Methods for Addition and Subtraction MI Adding and Subtracting Decimals Mental Methods

	Th	н	Т	U	Th	, H	_ T,	, U
		5	3	4	6 1	¹ 6	7 18	16
+	2	6	7	8	-	7	4	9
1	3	1 2	1 ¹	2	6	9	3	7

Multiplication

Students should know their times tables from 1×1 up to 12×12 . If students are not secure on these, they need to continue to practise until they are. Numeracy Ninjas in form time gives them the opportunity to practise these.

×	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12
2	0	2	4	6	8	10	12	14	16	18	20	22	24
3	0	3	6	9	12	15	18	21	24	27	30	33	36
4	0	4	8	12	16	20	24	28	32	36	40	44	48
5	0	5	10	15	20	25	30	35	40	45	50	55	60
6	0	6	12	18	24	30	36	42	48	54	60	66	72
7	0	7	14	21	28	35	42	49	56	63	70	77	84
8	0	8	16	24	32	40	48	56	64	72	80	88	96
9	0	9	18	27	36	45	54	63	72	81	90	99	108
10	0	10	20	30	40	50	60	70	80	90	100	110	120
11	0	11	22	33	44	55	66	77	88	99	110	121	132
12	0	12	24	36	48	60	72	84	96	108	120	132	144

Division

Dividing by 10 or 100 move digits 1 or 2 places respectively to the right.

Dividing by single digits – work backwards from tables.

e.g. to find 48 ÷ 6

think 6 x ? = 48 answer:

8 Written Methods for

Multiplication ► II Long

Multiplication MI

Multiplying Decimals

Written Methods for Division MDivision M Dividing by Decimals

Method 1	Method 2						
Short division	Chunking						
This method is also known as the "bus stop." Write the number you are dividing by outside the "bus stop", and the other number under it. There are 2 fours in 9 with remainder 1 so the 2 goes above the 9 on top of the bus stop and the remainder 1 is placed in front of the 8.	980. We can do this l	eeded	to make culating multip	oles of 4			
There are 4 fours in 18 with remainder 2. There are 5 fours in 20 with no remainder. $\frac{2}{4} \frac{4}{9} \frac{5}{18} \frac{5}{20}$ The answer is 245.	$100 \times 4 = 100 \times 4 = 100 \times 4 = 10 \times 4 = 5 \times 4 = 245 \times 4 = 245 \times 4 = 10 \times 4 \times 4 = 10 \times 4 \times $	400 400 40 40 40 40 20 980	980 - 400 580 - 400 180 - 40 140 - 40 100 - 40 60 - 40 20 - 20	980 580 180 140 100 60 20 0			

Inverse Operations

Inverse operations allow you to undo a calculation and check your answers.

Directed Numbers

The negative sign (-) tells us the number is below zero e.g. -4. The number line is useful when working with negative numbers:

Examples:

Inequalities

Inequalities on a Number Line

Symbol	Words	Example
>	Greater than	-1 0 1 2 3 4 5 6 7 8 9 10 11
<	Less than	x < -1
≥	Greater than or equal to	x≥3 -1 0 1 2 3 4 5 6 7 8 9 10 11
≤	Less than or equal to	x≤5 -8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

Fractions

Numerator (number of parts we have) 2 Denominator (total parts in whole)

Types of Fractions

Fraction of an Amount

Equivalent Fractions

Addition and Subtraction of Fractions

HIAdding and Subtracting Fractions with the Same Denominator

HIAdding and Subtracting Fractions with Different Denominators

Adding Fractions

Subtracting Fractions

Same Denominators

Subtract the Numerators

 $\frac{5}{6} - \frac{2}{6} = \frac{3}{6}$

Simplify if possible

 $\frac{3\div 3}{6\div 3} = \frac{1}{2}$

Different Denominators

Use equivalent fractions

 $\frac{5}{6} - \frac{7}{12} = \frac{5 \times 2}{6 \times 2} - \frac{7}{12} = \frac{10}{12} - \frac{7}{12}$

Subtract the Numerators

 $\frac{10}{12} - \frac{7}{12} = \frac{3}{12}$

Simplify if possible

 $\frac{3\div 3}{12\div 3} = \frac{1}{4}$

Multiplying Fractions MIMultiplying and Dividing Fractions

Example 1

$$\frac{1}{5} \times \frac{2}{3} = \frac{1 \times 2}{5 \times 3} = \frac{2}{15}$$

Example 2

$$\frac{1}{5} \times \frac{1}{2} = \frac{1}{10}$$

Dividing Fractions Example:

$$\frac{3}{4} \div \frac{5}{6} = \frac{3}{4} \times \frac{6}{5} = \frac{3 \times 6}{4 \times 5} = \frac{18}{20}$$

Percentages

<u>The Basics</u>

"%" means out of 100

63% means 63/100

100% means 100/100 or the whole amount.

Percentages can be more than 100, e.g. 120%

Percentages do not have to be whole numbers e.g. 12.5% Finding a

Percentage of an Amount

HIPercentage of An Amount Including Increase and Decrease Mental methods

50% - halve (÷2)

25% - halve and halve again (or divide by 4)

10% - divide by 10

5% - halve 10%

1% - divide by 10 and 10 again, (or ÷100)

Other values – add/subtract multiples of these

Written Methods

Method 1	Method 2	Method 3
Use equivalent fractions	Use decimal multiplier (Use of	Use 10% (if percentage is a
	calculator needed here)	multiple of 10)

Find the equivalent fraction.	Change the fraction to a decimal	10% = 10/100 = 1/10 (÷10)
Simplify it (if possible).	and then multiply.	Find 10% of the amount and then
Find that fraction of		use this to find the required
the amount.		percentage.
Find 50% of 2000 kg	Find 65% of 450g	Find 70% of £35
50% = 50/100 = 1/2	65% = 65 ÷100 = 0.65	10% of £35 = £35 ÷10
1/2 of 2000 kg = 2000 ÷ 2	0.65 x 450 = 292.5g	= £3.50
= 1000 kg		70% = 7 x 10%
		7 x £3.50 = £24.50

Increasing/Decreasing a Value by a Given Amount Written method

Find the amount of increase or decrease and add/subtract from original.

Example 1: Increase £275 by 24% we need 124% of original

Method 1	Method 2 (Multiply by decimal multiplier)						
24% of £275 = £66	124% = 124/100 = 1.24						
Increased value is $275 + 66 = £341$	£275 x 1.24 = £341						
Example 2: Decrease £275 by 24% we need 76% of original							
100% - 24% = 76%							
76 / 100 = 0.76							

.

£275 x 0.76 = £209

Percentage Change Percentage Change

Percentage Change is all about comparing old to new values.

To find a percentage change:

- 1. Calculate the change
- 2. Find this change as a percentage of the original amount.

Percentage Change = <u>Change x</u> 100

Original Example:

A car is bought for £3200 and sold for £2400. What is the percentage loss? Loss = £3200 - £2400 = £800 Percentage Change = <u>800 x</u> 100 = 25% 3200 <u>One value as a percentage of another</u> ►II <u>Finding a Percentage</u> To find A as a

percentage of B work out:

Expressing as a % = <u>Given Amount</u> x 100 Total

Example:

Emily got 60 out of 80 marks in a test Express her

mark as a percentage.

Expressing as a % = <u>Given Amount</u> x 100 Total

Expressing as a % = <u>60 x</u> 100 = 75% 80

Decimals

A decimal is a number that contains a decimal point, the following are examples of decimals:

0.12, 0.459, 2.3, 3.68

Changing Decimals and Fractions into Percentages

To change a decimal to a percentage you have to multiply with 100%.

Example 1: 0 · 75 x 100% = 75%

Example 2: 0 · 13 x 100% = 13%

To change a fraction into a decimal you need to divide the numerator by the denominator:

3 8 = 3 ÷ 8 = 0.375

Equivalent Fraction, Decimal and Percentages

Fraction	Percentage	Decimal
1/2	50%	0.5
1/3	33.3%	0. 3
2/3	66.7%	0.6
1/4	25%	0.25
3/4	75%	0.75
1/5	20%	0.2

2/5	40%	0.4
1/10	10%	0.1
1/100	1%	0.01

HIROUNDING

Numbers can be rounded to give an **approximation**. Numbers must never be shortened without considering rounding.

To round:

- 1. Identify the place value to which we want to round
- (E.g. rounding to nearest 10, 2 decimal places, 3 significant figures)
- 2. Look at the digit to the right:
- If less than 5 round down
- If 5 or more round up
- 3. Ensure number correct size, add zeros as necessary

Examples:

1. Round 4562 to nearest 10

4562 number to right is less than 5 so round down = 4560

2. Round 0.0567 to 2 decimal places

0.0567 number to right is 5 or more so round up = 0.06

(NOTE: additional zeros not needed in this case)

3. Round 57852 to 3 significant figures

57852 number to right is 5 or more so round up = 57900

⊮I<u>Ratio</u>

A ratio is a comparison between the quantities of two things.

Ratio is used in a number of situations:

- In a cooking recipe
- In building when mixing concrete
- It is used in the scale of maps e.g. if a scale of 1 : 100 000 is used, it means that 1 cm on the map represents 100 000 cm in reality which is 1 km.

Finding Ratio's of Amounts

MI<u>Coordinates</u>

Coordinates are used to describe location. Coordinates are given as two numbers in a bracket separated by a comma.

The first numbers is the x- coordinate and the second number is the y-coordinate

Remember: Along the corridor and either up or down the stairs!

2D Shapes

Name	Picture	Sides	Angles	Parallel sides	Lines of symmetry
Equilateral Triangle		3 sides the same length	3 angles the same size	No pairs of parallel sides	3 lines of symmetry
Square		4 sides the same length	4 right angles	2 pairs of parallel sides	4 lines of symmetry
Rectangle		Opposite sides equal	4 right angles	2 pairs of parallel sides	2 lines of symmetry
Parallelogram		Opposite sides equal	Opposite angles equal	2 pairs of parallel sides	0 lines of symmetry
Trapezium		4 sides		1 pair of parallel sides	
Rhombus		4 sides the same length	Opposite angles equal	2 pairs of parallel sides	2 lines of symmetry
Kite		2 pairs of adjacent sides equal	1 pair of opposite angles are equal	No pairs of parallel sides	1 line of symmetry

Regular Hexagon	6 sides the same length	6 angles the same size	3 pairs of parallel sides	6 lines of symmetry
Regular Pentagon	5 sides the same length	5 angles the same size	No parallel sides	5 lines of symmetry
Regular Octagon	8 sides the same length	8 angles the same size	4 pairs of parallel sides	8 lines of symmetry
Isosceles Triangle	2 sides the same length	2 angles the same size	No parallel lines	1 line of symmetry
Scalene Triangle	No equal sides	No equal angles	No parallel sides	No lines o symmetry

3D Shapes

The Circle

HIFind the Circumference of a Circle Circumference = π x diameter **HIFinding the Area of a Circle Area =** π x r²

 π (Pi) is approximately equal to 3.141592 or can be calculated by using the π button on the calculator.

Perimeter

The Perimeter is the distance around the outside edge of a shape (measured in cm, mm, m etc.)Find the Perimeter of a Simple ShapeFinding the Perimeter of a Compound Shape Example:

Perimeter = 3 + 1 + 2 + 1 + 1 + 1 + 4 + 3 = 16 cm

Area

The Area is the amount of space a 2D shape covers (measured in cm², mm², m² etc.)

Example: Area can be found by counting squares = 12 cm²

Area of parallelogram = base x perpendicular height

HIArea of a Parallelogram

HI<u>Finding the Area of a Compound Shape</u>

Volume

Volume is the amount of space a 3D shape occupies (measured in m³, cm³, mm³) **Example**: Volume can be found by counting cubes = 11cm³

Formulae: Finding the Volume of a Cuboid

Volume = length x width x height

Prisms: Finding the Volume of a Prism

Volume = area of cross section x length

Metric Units of Measurement

How to Convert Between Different Metric Units

METRIC CONVERSIONS						
1 centimetre	=	10 millimetres	1 cm	=	10 mm	
1 decimetre	=	10 centimetres	1 dm	=	10 cm	
1 metre	=	100 centimetres	1 m	=	100 cm	
1 kilometre	=	1000 metres	1 km	=	1000 m	

METRIC CONVERSIONS					
1 gram	=	1000 milligrams	1g	=	1000 mg
1 kilogram	=	1000 grams	1 kg	=	1000 g
1 tonne (1 megagram)	=	1000 kilograms	1 tonne (1 Mg)	=	1000 kg

METRIC CONVERSIONS					
1 centilitre	=	10 millilitres	1 cl	=	10 ml
1 litre	=	1000 millilitres	11	=	1000 ml
1 kilolitre	=	1000 litres	1 kl	=	1000

Conversion Between Metric and Imperial Units

Time

Developing an understanding of time is one of the most important numeracy skills you can support your child to develop at home.

- Encourage students to tell you the time on both analogue and digital clocks. Get them to work out how long it is until certain events (dinner time, leaving for school etc.)
- • Support your students to use timetables, both online and paper versions, in order to plan journeys.
- Encourage your students to use TV guides and to calculate the length of time different programmes will run for.
- Encourage your students to use an alarm clock and a watch so that they are able to start managing their own time on a day-to-day basis.

24 hour clock conversion to 12 hour clock examples:

24-hour	12-hour	24-hour	12-hour
13:25	1:25pm	18:53	6:53pm
10:50	10:50am	22:05	10:05pm
16:41	4:41pm	07:54	7:54am
05:37	5:37am	00:17	12:17am
12:10	12:10pm	02:50	2:50am
09:29	9:29am	21:12	9:12pm
17:02	5:02pm	23:46	11:46pm

II Completing Time Calculations

Units of Time

1 millennium	=	1000 years
1 century	=	100 years
1 decade	=	10 years
1 year	=	365 days
1 leap year	=	365 days
1 year	=	12 months
1 year	=	52 weeks
1 week	=	7 days
1 day	=	24 hours
1 hour	=	60 minutes
1 minute	=	60 seconds

Season	Month	Days
Winter	January	31
	February	28 (or 29)
Spring	March	31
	April	30
	May	31
Summer	June	30
	July	31
	August	31
Autumn	September	30
	October	31
	November	30
Winter	December	31

Bearings

Data

Statistical Diagrams

Wherever possible the interpretation of graphs should be of utmost importance. All diagrams should have the following:

- Title
- Both axes labelled
- Graph breaks used to show where a scale doesn't start at zero
- Scales equally spaced
- Make good use of available space
- Where appropriate have independent variable on the horizontal axis, and dependent on the vertical

Types of Data

We collect data in order to highlight information to be interpreted. There are two types of data:

Discrete data	Continuous data Things that
Things that are not measured:	are measured:
 Colours Days of the week Favourite drink Number of boys in a family Shoe size 	 Pupil height Volume of a bottle Mass of a chocolate bar · Time to complete a test · Area of a television screen

Collecting and recording

We can record data in a list

e.g. here are the numbers of pets owned by pupils in form 9C: 1, 2, 1, 1, 2, 3, 2, 1, 2

, 1 , 1 , 2 , 4 , 2 , 1 , 5 , 2 , 3 , 1 , 1 , 4 , 1 , 3 , 2 , 5 , 1

A frequency table is more structured and helps with processing the information:

HI<u>Frequency Tables</u>

Number of Pets	Tally	Frequency
1	III II II —	11
2	=	8
3	111	3
4	11	2
5	11	2

Venn Diagrams:

IIDrawing Venn Diagrams

Venn diagrams enable students to organise information visually so they are able to see the relationships between two or three sets of items. They can then identify similarities and differences.

A Venn diagram consists of overlapping circles. Each circle contains all the elements of a set.

In order to communicate information, we use statistical diagrams. Here are some examples:

Pictograms: HIDrawing Pictograms HIInterpreting Pictograms

A pictogram uses symbols to represent frequency. We include a key to show the value of each symbol.

Bar Charts/Frequency Diagrams

Drawing Bar Graphs Interpreting Bar Charts

The height of each bar represents the frequency. The vertical axis is often labelled "frequency".

- All bars must be the same width and there must be equal sized gaps between the bars.
- Each bar should be clearly labelled.
- The scale on the vertical axis must be evenly spaced.
- If data is qualitative (words) or discrete (exact values) then leave spaces between bars. Label bars.

• If data continuous no spaces. Label lines at edges of bars.

Bar Chart Example:

Frequency Diagram Example:

Frequency Polygons

A frequency diagram where the middle of each bar is joined.

<u>Histograms</u>

In histograms the frequency is represented by the area of a bar, rather than its height. It is very easy to confuse histograms with bar charts. Unlike bar charts, histograms do not have gaps between their bars. This is because they are drawn for grouped continuous data – meaning that the data can take any value in a given range. Since it is the area of the bar that gives the frequency, in a histogram the widths of the bars do not have to be the same. The vertical axis should be labelled frequency density.

For curriculum areas outside of Mathematics, histograms normally have equal width bars. However, the vertical axis in these histograms is often incorrectly labelled as frequency, rather than frequency density.

Frequency Density = Class<u>Frequency</u> Width Area of Bar = FREQUENCY

Line Graphs

HIDrawing Line Graphs HIInterpreting Line Graphs

Line graphs are used across the curriculum to show how one variable changes as another one is increased. They are particularly useful in showing how things change over time. The two variables are represented along the horizontal and vertical axis. Data is plotted in points and the points are then joined with straight lines or a smooth curve as appropriate. Line graphs can also be used to show predictions for how things will change in the future. The only points that holds value are the points which have been plotted on the diagram.

Scatter Graphs MIDrawing Scatter Graphs

HIInterpreting Scatter Graphs

We plot points on the scatter diagram in the same way as for the line graph. One variable is plotted along the horizontal axis, the other along the vertical axis. We do not join the points but look for a correlation (relationship) between the two variables.

If there is a correlation, we can draw a line of best fit (must be a straight line, drawn with a pencil and ruler) on the diagram and use it to estimate the value of one variable given the other. There should be approximately the same number of points above and below the line.

Example:

The graph shows a POSITIVE CORRELATION between height and weight and you can determine values from the graph eg. for a weight of 6N the extension is 0.3m
Pie Charts
IIDrawing Pie Charts
IIInterpreting Pie Charts

The complete circle represents the total frequency, a full turn is 360°, so the angle for each sector is calculated by:

They $Angleare = (used 360 \div to total see) x$ the *individual* proportions *frequencies* making up the whole to

work out appropriate angles for

each sector.

Favourite Sport	Frequency	Degrees
Football	24	24 x 3 = 72°
Rugby	45	45 x 3 = 135°
Netball	36	36 x 3 =108°
Tennis	11	11 x 3 = 33°
Other	4	4 x 3 = 12°
Total	120	360°

eg. 360 ÷ 120 = 3°

Cumulative Frequency (running total) and Box Plots

A cumulative frequency graph shows a running total of the frequencies. A cumulative frequency diagram reproduces this table as a graph. A cumulative frequency diagram is drawn by plotting the cumulative frequency against the upper-class boundary of the respective group. Using a cumulative frequency diagram is a good way to find an estimate of the median average, or middle, value, and interquartile range.

Box and whisker plots are a convenient way of visually displaying the data distribution through their quartiles. The lines extending parallel from the boxes are known as the "whiskers", which are used to indicate variability outside the upper and lower quartiles. Outliers are sometimes plotted as individual dots that are in-line with whiskers. Box Plots can be drawn either vertically or horizontally.

Example: Graphs showing number of time spent on the Wifi

Averages

Definitions:

Mode - most common value in a set of data	<u>Mode</u>	
Median – middle value when data set in order	Median	
Mean – the sum of all values divided by the number of valu	ues in the data set.	<u>Mean</u>
Range – describes the spread of the data (not the average	of the data) Rar	nge_Range = highest value
– lowest value		

Example:

For the data below find the mode, median, mean and range:

2, 6, 4, 7, 4	always put in	n ascending	order 2.	4.4.6.7.
<i>, 0, 1, 7,</i> 1	and ays pace	1 abcentaning		1, 1, 0, 7,

Mode	4
Median	4
Mean	2 + 4 + 4 + 6 + 7 = 23 then 23 ÷ 5 = 4.6
Range	7 – 2 = 5

Estimated Mean MIFinding the Mean from a Table

Finding the Estimated Mean

The estimated mean is used to fins an estimate for the mean from grouped data.

Steps to find the estimated mean:

1. Find the mid point

- 2. Multiply the mid-point by the frequency
- 3. Add up the frequency
- 4. Add up the mid-point x frequency
- 5. Estimated Mean = <u>mid-point x frequency</u>

frequency total

Class Interval	Mid-point	Frequency	Mid-point × Frequency
$140 \le h < 150$	145	6	145 × 6 = 870
$150 \le h < 160$	155	16	155 × 16 = 2480
$160 \le h < 170$	165	21	165 × 21 = 3465
$170 \le h < 180$	175	8	175 × 8 = 1400
	Totals	51	8215

Estimated mean = 8215 ÷ 51

= 161.08