St ulian's

Numeracy Handbook Llawlyfr Rhifedd

At St Julian's School we believe that all of our students should have the opportunity to improve and apply their literacy, numeracy and digital competency skills to deepen their subject knowledge and develop skills for life across all areas of the curriculum. This Numeracy Handbook has been designed to give guidance and help staff, students and parents/carers. It includes the numerical methods used by the Maths Department and throughout St. Julian's. It is believed that by having consistent approaches to our numeracy skills it will be easier for our students to apply these skills across the curriculum and in turn make greater progress.

Whenever possible mental methods should be encouraged and the ability to use written methods checked. Students should ensure they always have their calculators with them to develop their confidence in using their calculator as well and using the correct calculator methods. Students should be encouraged to estimate their answers prior to completing their calculations reinforcing place value expectations and understanding.

The main strands of numeracy have been covered in this handbook which will support every St. Julian's' student in becoming numerate and confident with applying their skills in context. If you have any questions or would like further clarification, please contact the Maths
Department directly.

A numerate Student is able to:

- have a sense of the size of a number and where it fits into the number size;
- recall mathematical facts confidently;
- calculate accurately and efficiently, both mentally and with pencil and paper, drawing on a range of calculator strategies;
- use proportional reasoning to simplify and solve problems;
- use calculators and other ICT resources appropriately and effectively to solve mathematical problems, and select from the display the number of figures appropriate to the context of a calculation;
- use simple formulae and substitute numbers in them;
- measure and estimate measurements, choosing suitable units, and reading numbers correctly from a range of meters, dials and scales;
- calculate simple perimeters, areas and volumes, recognising the degree of accuracy that can be achieved;
- understand and use measures of time and speed, and rates such as $£$ per hour or miles per litre;
- draw plane figures to given specifications and appreciate the concept of scale in geometrical drawings and maths;
- understand the difference between the mean, median and mode and the purpose for which each is used;
- collect data, discrete and continuous, and draw, interpret and predict form graphs, diagrams, charts and tables;
- have some understanding of the measurement of probability and risk;
- explain methods and justify reasoning and conclusions, using correct mathematical terms;
- judge the reasonableness of solutions and check them when necessary;
- give results to a degree of accuracy to the context.

Topic	Content	Page
Number	Place value	4
	Number Facts	4
	Four rules of number including mental and written methods	6
	Inverse operations	9
	Directed Numbers	9
	Inequalities	10
	Fractions	11
	Percentages	14
	Decimals	16
	Rounding	18
	Ratio	19
Geometry	Coordinates	20
	2D Shapes	21
	3D Shapes	22
	The Circle	23
	Perimeter	23
	Area	24
	Volume	25
	Units of Measurement	26
	Time	27
	Bearings	29
Data	Types of Data	30
	Graphs and Charts	30
	Averages and Range	38

Thousands (1000)	Hundreds (100)	Tens (10)	Units (1)	.	Tenths $\underline{1}$	Hundredths 1	Thousandths
			100	$\underline{1}$			

The placement of the digits within the number gives us the value of that digit.

Within the number:
284.567

The digit 8 has the value of 8 tens and the digit 5 has the value of 5 tenths ($5 / 10$)

Number Facts

Even Numbers:

$$
2 \text {, 4, 6, 8, } 10 \text {,12 }
$$

(all even numbers can be divided by 2)

Odd Numbers:

$$
1,3,5,7,9,11
$$

Square Numbers are numbers multiplied by themselves:

1×1
$=1$

2×2
$=4$

3×3
$=9$

4×4
$=16$

Cube Numbers are numbers multiplied by themselves and then multiplied again:

$1 \times 1 \times 1=1$

$$
2 \times 2 \times 2=8
$$

Triangular Numbers:

Multiples of a number are found by multiplying that number by another whole number:
$4 \times 1=4$
$4 \times 2=8$
$4 \times 3=12$
$4 \times 4=16$
$4 \times 5=20$
$4 \times 6=24$

$4,8,12,16,20$ and 24 are multiples of 4 .

Factors are numbers that divide exactly into another number. The factors of 12 are $1,2,3,4,6,12$.

Prime Numbers have exactly two factors; 1 and itself. Remember 1 is NOT a prime number.

Prime numbers to 100				
2	3	5	7	11
13	17	19	23	29
31	37	41	43	47
53	59	61	67	71
73	79	83	89	97

Four Rules of Number

Mental Methods Addition rII Addition

54 + 27

Method 1	Method 2	Method 3
Add the tens, then the units,,Split the number to added be then add together. into tens and units.	Round up to the next 10, then subtract.	
$50+20=70$ $4+7=11$ $70+11=81$	$54+20=74$ $74+7=81$	$54+30=84$ 30 is 3 too many $84-3=81$

Subtraction MISubtraction

93-56

Method 1	Method 2
Count on	Break up the number being subtracted
Count on from 56 until you reach $934+$ $30+3=37$	e.g. subtract 50 then subtract 6 $93-50=43$ $43-6=37$
Addition	Subtraction
+2678 Line up the digits in the correct "place value." Begin by adding the units. Show working out. With addition the larger number does not NEED to go on the top.	Line up the digits in the correct place value. Begin by subtracting the units. is smaller than 9, so take one "ten" from the eight "tens" to make the 6 units 16 units. Now continue subtracting. You will have to take 1 "thousand" from the "thousands" column when you subtract the "hundreds."

Written Methods for Addition and Subtraction III Adding and Subtracting Decimals Mental Methods

Multiplication

Students should know their times tables from 1×1 up to 12×12. If students are not secure on these, they need to continue to practise until they are. Numeracy Ninjas in form time gives them the opportunity to practise these.

\times	0	1	2	3	4	5	6	7	8	9	10	11	12
0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	1	2	3	4	5	6	7	8	9	10	11	12
2	0	2	4	6	8	10	12	14	16	18	20	22	24
3	0	3	6	9	12	15	18	21	24	27	30	33	36
4	0	4	8	12	16	20	24	28	32	36	40	44	48
5	0	5	10	15	20	25	30	35	40	45	50	55	60
6	0	6	12	18	24	30	36	42	48	54	60	66	72
7	0	7	14	21	28	35	42	49	56	63	70	77	84
8	0	8	16	24	32	40	48	56	64	72	80	88	96
9	0	9	18	27	36	45	54	63	72	81	90	99	108
10	0	10	20	30	40	50	60	70	80	90	100	110	120
11	0	11	22	33	44	55	66	77	88	99	110	121	132
12	0	12	24	36	48	60	72	84	96	108	120	132	144

Division

Dividing by 10 or 100 move digits 1 or 2 places respectively to the right.
Dividing by single digits - work backwards from tables.
e.g. to find $48 \div 6$
think $6 \times ?=48$ answer:

8 Written Methods for

Multiplication $\times 1$ Long
Multiplication $\boldsymbol{\text { II }}$
Multiplying Decimals

Written Methods for Division rIIDivision •II Dividing by Decimals

Method 1	Method 2		
Short division	Chunking		
This method is also known as the "bus stop." Write the number you are dividing by outside the "bus stop", and the other number under it. There are 2 fours in 9 with remainder 1 so the 2 goes above the 9 on top of the bus stop and the remainder 1 is placed in front of the 8 .	Since we are dividing by 4, we need to work ou how many 4 s are needed to make 980. We can do this by calculating multiples of subtracting them from 980 until we get down to zero.		
			980
fours in 18 with remainder	$100 \times 4=400$	980-400	580
There are 5 fours in 20 with no remainder.	$100 \times 4=400$	580-400	180
248	$10 \times 4=40$	180-40	140
$4 \longdiv { 9 \quad 1 8 { } ^ { 2 } 0 }$	$10 \times 4=40$	140-40	100
	$10 \times 4=40$	100-40	60
	$10 \times 4=40$	60-40	20
The answer is 245.	$5 \times 4=20$	20-20	0
	$245 \times 4=980$		

The answer is 245.

Inverse Operations

Inverse operations allow you to undo a calculation and check your answers.

Directed Numbers

The negative sign (-) tells us the number is below zero e.g. -4. The number line is useful when working with negative numbers:

Adding and Subtracting Directed Numbers

Multiplying and Dividing Directed Numbers

Examples:

$$
\begin{gathered}
4 \times 3=12 \\
-4 \times-3=12-4 \\
\times 3=-12 \\
4 \times-3=-12
\end{gathered}
$$

Inequalities

Inequalities on a Number Line

Symbol
$>$
$<$
Less than
\geq
Greater than or equal to

Less than or equal to
\leq

Example
$x>5$

Numerator

(number of parts we have)

Denominator (total parts in whole)

Types of Fractions

Proper Fractions
Numerator is smaller than the denominator

Improper Fractions
Numerator is equal or greater than the denominator

Mixed Fractions

Consists of a whole number and a proper fraction

$$
\frac{1}{2}, \frac{3}{4}, \frac{5}{6}, \frac{11}{20}, \frac{21}{25}
$$

Fraction of an Amount

$$
\frac{1}{3}=\frac{2}{6} \quad \frac{2}{3}=\frac{4}{6} \quad \frac{1}{4}=\frac{2}{8} \quad \frac{3}{4}=\frac{6}{8}
$$

Equivalent Fractions

1/1													
1/2							1/2						
1/3				1/3							1/3		
	1/4		1/4			1/4					1/4		
1/5	/5	1/5		1/5				1/5				1/5	
1/6		1/6		1/6		1/6			1/6			1/6	
1/7	1/7		1/7		$1 / 7$		1/7			1/7			1/7
1/8	1/8		1/8		1/8		1/8		1/8		1/8		1/8
1/9	1/9		1/9	1/9		1/9		1/9		1/9		1/9	1/9
1/10	1/10	1/10		1/10	1/10		1/10		1/10	1/10		1/10	1/10
1/11	1/11	1/11	1/11	1/11		1/11		1/11	1/11		1/11	1/11	1/11
1/12	1/12	1/12	1/12	1/12	$21 /$	12	1/12	21	12	/12	$21 / 1$	$21 / 12$	$21 / 12$

Addition and Subtraction of Fractions

PIIAdding and Subtracting Fractions with the Same Denominator
IIAdding and Subtracting Fractions with Different Denominators

Adding Fractions with Like Denominators

$$
\frac{1}{7}+\frac{3}{7}
$$

Add the numerators.
Denominator is unchanged. $\frac{1+3}{7}$ $\frac{4}{7}$

Adding Fractions with Unlike Denominators

$$
\frac{1}{8}+\frac{2}{3}
$$

Rewrite with common denominator $3 \times \frac{1}{8}+\frac{2}{3} \times 8$

Add the numerators $\frac{3}{24}+\frac{16}{24}$
19

Subtracting Fractions

Same Denominators
Subtract the Numerators

$$
\frac{5}{6}-\frac{2}{6}=\frac{3}{6}
$$

Simplify if possible

$$
\frac{3 \div 3}{6 \div 3}=\frac{1}{2}
$$

Different Denominators
Use equivalent fractions
$\frac{5}{6}-\frac{7}{12}=\frac{5 \times 2}{6 \times 2}-\frac{7}{12}=\frac{10}{12}-\frac{7}{12}$
Subtract the Numerators

$$
\frac{10}{12}-\frac{7}{12}=\frac{3}{12}
$$

Simplify if possible

$$
\frac{3 \div 3}{12 \div 3}=\frac{1}{4}
$$

Multiplying Fractions MIMultiplying and Dividing Fractions

Example 1

$$
\frac{1}{5} \times \frac{2}{3}=\frac{1 \times 2}{5 \times 3}=\frac{2}{15}
$$

Example 2

$$
\frac{1}{5} \times \frac{1}{2}=\frac{1}{10}
$$

Dividing Fractions Example:

$$
\frac{3}{4} \div \frac{5}{6}=\frac{3}{4} \times \frac{6}{5}=\frac{3 \times 6}{4 \times 5}=\frac{18}{20}
$$

Percentages

The Basics

"\%" means out of 100
63\% means 63/100
100% means 100/100 or the whole amount.
Percentages can be more than 100, e.g. 120\%
Percentages do not have to be whole numbers e.g. 12.5\% Finding a

Percentage of an Amount

MIIPercentage of An Amount Including Increase and Decrease Mental methods
50\% - halve ($\div 2$)
25% - halve and halve again (or divide by 4)
10% - divide by 10
5\% - halve 10\%
1% - divide by 10 and 10 again, (or $\div 100$)
Other values - add/subtract multiples of these

Written Methods

Method 1	Method 2	Method 3
Use equivalent fractions	Use decimal multiplier (Use of calculator needed here)	Use 10\% (if percentage is a multiple of 10)

Find the equivalent fraction. Simplify it (if possible). Find that fraction of the amount.	Change the fraction to a decimal and then multiply.	$10 \%=10 / 100=1 / 10(\div 10)$ Find 10% of the amount and then use this to find the required percentage.
Find 50% of 2000 kg $\begin{aligned} & 50 \%=50 / 100=1 / 2 \\ & 1 / 2 \text { of } 2000 \mathrm{~kg}=2000 \div 2 \\ & =1000 \mathrm{~kg} \end{aligned}$	Find 65% of 450 g $\begin{aligned} & 65 \%=65 \div 100=0.65 \\ & 0.65 \times 450=\mathbf{2 9 2 . 5 g} \end{aligned}$	$\begin{aligned} & \text { Find } 70 \% \text { of } £ 35 \\ & 10 \% \text { of } £ 35=£ 35 \div 10 \\ & =£ 3.50 \\ & 70 \%=7 \times 10 \% \\ & 7 \times £ 3.50=£ \mathbf{2 4 . 5 0} \\ & \hline \end{aligned}$

Increasing/Decreasing a Value by a Given Amount Written method

Find the amount of increase or decrease and add/subtract from original.
Example 1: Increase $\mathbf{f 2 7 5}$ by $\mathbf{2 4 \%}$ we need $\mathbf{1 2 4 \%}$ of original

Method 1

24% of $£ 275=£ 66$
Increased value is $275+66=£ 341$

Method 2 (Multiply by decimal multiplier)
$124 \%=124 / 100=1.24$
$£ 275 \times 1.24=£ 341$

Example 2: Decrease $\mathbf{£ 2 7 5}$ by $\mathbf{2 4 \%}$ we need $\mathbf{7 6 \%}$ of original
100\%-24\% = 76\%
$76 / 100=0.76$
$£ 275 \times 0.76=£ 209$

Percentage Change

 Percentage ChangePercentage Change is all about comparing old to new values.
To find a percentage change:

1. Calculate the change
2. Find this change as a percentage of the original amount.

Percentage Change = Change $\times 100$

Original Example:

A car is bought for $£ 3200$ and sold for $£ 2400$. What is the percentage loss?
Loss $=£ 3200-£ 2400=£ 800$
Percentage Change $=\underline{800} \times 100=25 \% 3200$
One value as a percentage of another $\boldsymbol{\prime l}$ Finding a Percentage To find A as a

$$
\text { percentage of } B \text { work out: }
$$

Expressing as a \% = Given Amount $\times 100$ Total

Example:

Emily got 60 out of 80 marks in a test Express her mark as a percentage.

Expressing as a \% = $\underline{60} \times 100=75 \% 80$

Decimals

A decimal is a number that contains a decimal point, the following are examples of decimals:

$$
0.12,0.459,2.3,3.68
$$

Changing Decimals and Fractions into Percentages

To change a decimal to a percentage you have to multiply with 100%.

Example 1: $0.75 \times 100 \%=75 \%$
Example 2: $0 \cdot 13 \times 100 \%=13 \%$

To change a fraction into a decimal you need to divide the numerator by the denominator:

$$
\frac{3}{8}=3 \div 8=0.375
$$

Equivalent Fraction, Decimal and Percentages

Fraction	Percentage	Decimal
$1 / 2$	50%	0.5
$1 / 3$	33.3%	0.3
$2 / 3$	66.7%	0.6
$1 / 4$	25%	0.25
$3 / 4$	75%	0.75
$1 / 5$	20%	0.2

$2 / 5$	40%	0.4
$1 / 10$	10%	0.1
$1 / 100$	1%	0.01

MRounding

Numbers can be rounded to give an approximation. Numbers must never be shortened without considering rounding.

To round:

1. Identify the place value to which we want to round
(E.g. rounding to nearest 10, 2 decimal places, 3 significant figures)
2. Look at the digit to the right:

- If less than 5 round down
- If 5 or more round up

3. Ensure number correct size, add zeros as necessary

Examples:

1. Round 4562 to nearest 10

4562 number to right is less than 5 so round down $=4560$
2. Round 0.0567 to 2 decimal places
0.0567 number to right is 5 or more so round up $=0.06$
(NOTE: additional zeros not needed in this case)
3. Round 57852 to 3 significant figures

57852 number to right is 5 or more so round up $=57900$

A ratio is a comparison between the quantities of two things.

Example:

There are 3 triangles and 2 squares.

Ratio is used in a number of situations:

- In a cooking recipe
- In building when mixing concrete
- It is used in the scale of maps e.g. if a scale of $1: \mathbf{1 0 0} \mathbf{0 0 0}$ is used, it means that $\mathbf{1} \mathbf{c m}$ on the map represents $\mathbf{1 0 0 0 0 0} \mathbf{~ c m}$ in reality which is $\mathbf{1} \mathbf{~ k m}$.

Finding Ratio's of Amounts

Share $£ 50$ in the ratio $2: 3$

1) Find the total number of parts

$$
2+3=5
$$

2) Divide the amount by the total number of parts

$$
£ 50 \div 5=£ 10=1 \text { part }
$$

3) Multiply each number in the ratio by the value of $\mathbf{1}$ part

Coordinates are used to describe location. Coordinates are given as two numbers in a bracket separated by a comma.

The first numbers is the x-coordinate and the second number is the y-coordinate

Remember: Along the corridor and either up or down the stairs!

3D Shapes

The Circle

MIIFind the Circumference of a Circle Circumference $=\pi x$ diameter IIFinding the Area of a Circle Area $=\pi \times r^{2}$

$\pi(\mathrm{Pi})$ is approximately equal to 3.141592 or can be calculated by using the π button on the calculator.

Perimeter

The Perimeter is the distance around the outside edge of a shape (measured in $\mathrm{cm}, \mathrm{mm}, \mathrm{m}$ etc.)
Find the Perimeter of a Simple Shape Finding the Perimeter of a Compound Shape Example:

Perimeter $=3+1+2+1+1+1+4+3=16 \mathrm{~cm}$

Area

The Area is the amount of space a 2D shape covers (measured in $\mathrm{cm}^{2}, \mathrm{~mm}^{2}, \mathrm{~m}^{2}$ etc.)
Example: Area can be found by counting squares $=12 \mathrm{~cm}^{2}$

Area of rectangle $=$ length \times width
Area of a Rectangle
length

Area of triangle $=1 / 2 \times$ base \times perpendicular height
Area of a Triangle

Area of trapezium $=1 / 2 \times(a+b) \times h$
NIArea of a Trapezium

Area of parallelogram = base \times perpendicular height

DIIFinding the Area of a Compound Shape

Volume

Volume is the amount of space a 3D shape occupies (measured in $\mathrm{m}^{3}, \mathrm{~cm}^{3}, \mathrm{~mm}^{3}$) Example:
Volume can be found by counting cubes $=11 \mathrm{~cm}^{3}$

Formulae: Finding the Volume of a Cuboid
Volume $=$ length x width x height

Prisms: Finding the Volume of a Prism
Volume $=$ area of cross section x length

Metric Units of Measurement

MHow to Convert Between Different Metric Units

| METRIC CONVERSIONS | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 centimetre | $=10$ millimetres | 1 cm | $=10 \mathrm{~mm}$ | |
| 1 decimetre | $=10$ centimetres | 1 dm | $=10 \mathrm{~cm}$ | |
| 1 metre | $=100$ centimetres | 1 m | $=100 \mathrm{~cm}$ | |
| 1 kilometre | $=1000$ metres | 1 km | $=1000 \mathrm{~m}$ | |

METRIC CONVERSIONS

| 1 gram | $=1000$ milligrams | 1 g | $=1000 \mathrm{mg}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 kilogram | $=1000$ grams | 1 kg | $=1000 \mathrm{~g}$ |
| 1 tonne (1 megagram) | $=1000$ kilograms | 1 tone
 $(1 \mathrm{Mg})$ | $=1000 \mathrm{~kg}$ |

METRIC CONVERSIONS

| 1 centilitre | $=$ | 10 millilitres | 1 cl | $=10 \mathrm{ml}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| 1 litre | $=1000$ millilitres | 11 | $=1000 \mathrm{ml}$ | |
| 1 kilolitre | $=1000$ litres | 1 kl | $=10001$ | |

Conversion Between Metric and Imperial Units

Conversion Factors
$\frac{\text { Length }}{1 \text { inch }=2.5 \text { centimetres }}$
1 foot $=30$ centimetres
1 mile $=1.6$ kilometres
5 miles $=8$ kilometres

Capacity
1 pint $=570$ millitres
1 gallon $=4.5$ litres
14 pints $=1$ litre

Time

Developing an understanding of time is one of the most important numeracy skills you can support your child to develop at home.

- Encourage students to tell you the time on both analogue and digital clocks. Get them to work out how long it is until certain events (dinner time, leaving for school etc.)
- Support your students to use timetables, both online and paper versions, in order to plan journeys.
- Encourage your students to use TV guides and to calculate the length of time different programmes will run for.
- Encourage your students to use an alarm clock and a watch so that they are able to start managing their own time on a day-to-day basis.
$\mathbf{2 4}$ hour clock conversion to $\mathbf{1 2}$ hour clock examples:

24-hour	12-hour
$13: 25$	$1: 25 \mathrm{pm}$
$10: 50$	$\underline{10: 50 \mathrm{am}}$
$16: 41$	$\underline{4: 41 \mathrm{pm}}$
$05: 37$	$\underline{5: 37 \mathrm{am}}$
$12: 10$	$\underline{12: 10 \mathrm{pm}}$
$09: 29$	$\underline{9: 29 \mathrm{am}}$
$17: 02$	$\underline{5: 02 \mathrm{pm}}$

24-hour	12-hour
$18: 53$	$\underline{6: 53 \mathrm{pm}}$
$22: 05$	$\underline{10: 05 \mathrm{pm}}$
$07: 54$	$\underline{7: 54 \mathrm{am}}$
$00: 17$	$\underline{12: 17 \mathrm{am}}$
$02: 50$	$\underline{2: 50 \mathrm{am}}$
$21: 12$	$\underline{9: 12 \mathrm{pm}}$
$23: 46$	$\underline{11: 46 \mathrm{pm}}$

II Completing Time Calculations

Units of Time

1 millennium	$=1000$ years
1 century	$=100$ years
1 decade	$=10$ years
1 year	$=365$ days
1 leap year	$=365$ days
1 year	$=12$ months
1 year	$=52$ weeks
1 week	$=7$ days
1 day	$=24$ hours
1 hour	$=60$ minutes
1 minute	$=60$ seconds

Season	Month	Days
Winter	January	31
	February	28 (or 29)
	March	31
	April	30
	May	31
Summer	June	30
	July	31
	August	31
Autumn	September	30
	October	31
	November	30
Winter	December	31

Bearings

Data

Statistical Diagrams

Wherever possible the interpretation of graphs should be of utmost importance. All diagrams should have the following:

- Title
- Both axes labelled
- Graph breaks used to show where a scale doesn't start at zero
- Scales equally spaced
- Make good use of available space
- Where appropriate have independent variable on the horizontal axis, and dependent on the vertical

Types of Data

We collect data in order to highlight information to be interpreted. There are two types of data:

Discrete data Things that are not measured:	Continuous data Things that are measured:
- Colours - Days of the week - Favourite drink - Number of boys in a family . Shoe size	- Pupil height - Volume of a bottle - Mass of a chocolate bar • Time to complete a test • Area of a television screen

Collecting and recording

We can record data in a list
e.g. here are the numbers of pets owned by pupils in form $9 \mathrm{C}: 1,2,1,1,2,3,2,1,2$
$, 1,1,2,4,2,1,5,2,3,1,1,4,1,3,2,5,1$

A frequency table is more structured and helps with processing the information:
MIIFrequency Tables

Number of Pets	Tally	Frequency
1	IIII IIII	
2	IIIIIII	11
3	IIII	8
4	III	3
5	III	2

Venn Diagrams:

HIDrawing Venn Diagrams
Venn diagrams enable students to organise information visually so they are able to see the relationships between two or three sets of items. They can then identify similarities and differences.
A Venn diagram consists of overlapping circles. Each circle contains all the elements of a set.

In order to communicate information, we use statistical diagrams. Here are some examples:

Pictograms: HIDrawing Pictograms Mllnterpreting Pictograms

A pictogram uses symbols to represent frequency. We include a key to show the value of each symbol.

Bar Charts/Frequency Diagrams

Drawing Bar Graphs Interpreting Bar Charts
The height of each bar represents the frequency. The vertical axis is often labelled "frequency".

- All bars must be the same width and there must be equal sized gaps between the bars.
- Each bar should be clearly labelled.
- The scale on the vertical axis must be evenly spaced.
- If data is qualitative (words) or discrete (exact values) then leave spaces between bars. Label bars.
- If data continuous no spaces. Label lines at edges of bars.

Bar Chart Example:

Sandwiches sold in a café in one week

Frequency Diagram Example:

Frequency Polygons

A frequency diagram where the middle of each bar is joined.

Histograms

In histograms the frequency is represented by the area of a bar, rather than its height. It is very easy to confuse histograms with bar charts. Unlike bar charts, histograms do not have gaps between their bars. This is because they are drawn for grouped continuous data - meaning that the data can take any value in a given range. Since it is the area of the bar that gives the frequency, in a histogram the widths of the bars do not have to be the same. The vertical axis should be labelled frequency density.

For curriculum areas outside of Mathematics, histograms normally have equal width bars. However, the vertical axis in these histograms is often incorrectly labelled as frequency, rather than frequency density.

Frequency Density $=$ ClassFrequency Width Area of Bar $=$ FREQUENCY

Line Graphs

Line graphs are used across the curriculum to show how one variable changes as another one is increased. They are particularly useful in showing how things change over time. The two variables are represented along the horizontal and vertical axis. Data is plotted in points and the points are then joined with straight lines or a smooth curve as appropriate. Line graphs can also be used to show predictions for how things will change in the future. The only points that holds value are the points which have been plotted on the diagram.

Scatter Graphs IIDrawing Scatter Graphs

 IIInterpreting Scatter GraphsWe plot points on the scatter diagram in the same way as for the line graph. One variable is plotted along the horizontal axis, the other along the vertical axis. We do not join the points but look for a correlation (relationship) between the two variables.

If there is a correlation, we can draw a line of best fit (must be a straight line, drawn with a pencil and ruler) on the diagram and use it to estimate the value of one variable given the other. There should be approximately the same number of points above and below the line.

Example:

The graph shows a POSITIVE CORRELATION between height and weight and you can determine values from the graph eg. for a weight of 6 N the extension is 0.3 m

Pie Charts

IIDrawing Pie Charts Illnterpreting Pie Charts

The complete circle represents the total frequency, a full turn is 360°, so the angle for each sector is calculated by:

TheyAngleare $=($ used $360 \div$ tototalsee $) x$ the individualproportions frequenciesmaking up the whole to work out appropriate angles for each sector.

Favourite Sport	Frequency	Degrees
Football	24	$24 \times 3=72^{\circ}$
Rugby	45	$45 \times 3=135^{\circ}$
Netball	36	$36 \times 3=108^{\circ}$
Tennis	11	$11 \times 3=33^{\circ}$
Other	4	$4 \times 3=12^{\circ}$
Total	120	360°

Cumulative Frequency (running total) and Box Plots

A cumulative frequency graph shows a running total of the frequencies. A cumulative frequency diagram reproduces this table as a graph. A cumulative frequency diagram is drawn by plotting the cumulative frequency against the upper-class boundary of the respective group. Using a cumulative frequency diagram is a good way to find an estimate of the median average, or middle, value, and interquartile range.

Box and whisker plots are a convenient way of visually displaying the data distribution through their quartiles. The lines extending parallel from the boxes are known as the "whiskers", which are used to indicate variability outside the upper and lower quartiles. Outliers are sometimes plotted as individual dots that are in-line with whiskers. Box Plots can be drawn either vertically or horizontally.

Example: Graphs showing number of time spent on the Wifi

Averages

Definitions:

Mode - most common value in a set of data

Mode

Median

Median - middle value when data set in order

Mean - the sum of all values divided by the number of values in the data set.
Mean
Range - describes the spread of the data (not the average of the data) \quad Range Range $=$ highest value

- lowest value

Example:

For the data below find the mode, median, mean and range:
$2,6,4,7,4 \ldots$ always put in ascending order $2,4,4,6,7$,

Mode	4
Median	4
Mean	$2+4+4+6+7=23$ then $23 \div 5=4.6$
Range	$7-2=5$

Estimated Mean

The estimated mean is used to fins an estimate for the mean from grouped data.
Steps to find the estimated mean:

1. Find the mid point
2. Multiply the mid-point by the frequency
3. Add up the frequency
4. Add up the mid-point x frequency
5. Estimated Mean = mid-point x frequency

frequency total

Class Intenval	Mid-point	Frequency	Mid-point \times Frequency
$140 \leq h<150$	145	6	$145 \times 6=870$
$150 \leq h<160$	155	16	$155 \times 16=2480$
$160 \leq h<170$	165	21	$165 \times 21=3465$
$170 \leq h<180$	175	8	$175 \times 8=1400$
	Totals	$\mathbf{5 1}$	$\mathbf{8 2 1 5}$

$$
\begin{aligned}
\text { Estimated mean } & =8215 \div 51 \\
& =161.08
\end{aligned}
$$

